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ABSTRACT 

A unified theory on a certain type of Inequalities for 

abstract linear operators and, In particular,  for ordinary 

linear differential operators of the first, second, and fourth 

order Is developed.    The statements which Involve these 

Inequalities lead to a principle of error estimation.    With a 

programmed procedure, approximate solutions and corresponding 

error bounds have been calculated for some examples of the 

second and fourth order. 



:  -    -J»«l,-It*JvW•«'-»'t«»f
lraft'W••■ 

1.  INTRODUCTION 

This paper Is mainly concerned with linear ordinary differential 

operators L such that 

L[u](x)>.0  (0 <. x <. 1)  Implies  u(x) >. 0 (0 <, x <. 1) 

for all functions u(x) which possess derivatives of sufficient high 

order and satisfy certain equations, or Inequalities, at the boundary 

points x - 0 and x ■ 1.  In particular, we are Interested In how 

this property can be applied In order to obtain error bounds for an 

approximate solution of a boundary value problem which Involves the 

operator L. 

In Section 2, an abstract theory on Inverse-positive linear operators 

M Is developed. This theory Is then applied to differential equations 

of the first and second order (Section 3), to systems of such equations 

(Section 4), and to some differential equations of the fourth order 

(Section 5). For all of these problems, we obtain in this way principles 

for error estimation.  In Section 6, we finally give some numerical results 

which have been gained by a programmed procedure based on the error 

estimation principle Just mentioned. 

Many results concerning inequalities for ordinary linear differential 

operators can be found in the literature.  In order to prove these 

results, several different methods have been used. This paper shall show 



that many of those results, and new results also, can be derived In 

a rather simple way from simple abstract theorems.  In particular, 

this is true for results which are useful for numerical calculations. 

Some of the theorems in this paper are already known, for example, the 

basic Theorem 1 in Section 2, and its applications to differential 

operators of first and second order, and also the remarks concerning 

iterative procedures in Section 2.6. Most of the other results seem 

to be new. 

The results in this paper can be generalized. For example, the 

abstract theorems in Section 2, as well as the numerical procedure in 

Section 6, can be applied to linear partial differential equations also. 

Moreover, Theorem 1 in Section 2 is a special case of a theorem on 

nonlinear inverse-monotonic operators M. This more general cheorem 

can be applied to nonlinear ordinary and partial differential equations, 

and a similar procedure as that in Section 6 can be used to obtain error 

bounds for certain types of such nonlinear equations. While a survey 

on such applications to nonlinear equations will be given elsewhere [8], 

we restrict ourselves here to linear operators and ordinary differential 

equations in order to be able to give more details. 



2.  INVERSE-POSITIVE OPERATORS 

Let R ■ {u,v,...} and S ■ {U,V,...} be linear partially 

ordered spaces, and let M be a linear operator which maps R into S. 

Under what aonditione is it true that 

Mu >_ 0 imptiee    u >_ 0 

for   u e R? 

A linear operator with this property will be called inverse- 

positive»  because the above implication holds If any only if 

M has a positive inverse, 

i.e., M-1 exists, and Ü 1 0 implies M'H* >. 0 for U in the 

domain of M . 

2.1 SUFFICIENT CONDITIONS 

Let R be Archimedian, i.e. 

nu <_ v (n ■ 1,2,...) implies    \i <_Ö 

if u,v are arbitrary fixed elements in R. We define a second order 

relation u X v in R ( u strongly smaller than v ) by: 

u y-0 ( u strongly positive)iff   u has the following 

PROPERTY o: For each   v c R there exists a natural number   n 

such that    v <_ nu. 

Moreover, we require that there is defined a second order relation 

uX V in S, also. This relation may be defined by Property o, or may 
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not, but it shall satisfy the following conditions: 

U>-0,  V >_ 0 imply U + V^O;  U>-0,  A>0 imply AU^-0; 

U yo    implies U >_ 0. 

These assumptions shall hold throughout this Section 2. 

THEOREM 1: Let the following aaeumptions be satisfied. 

Assumption I:    For   w e R, 

w _> 0,  Mw Xo  imply      w ^0. 

Assumption II:    There exists    z e R such that 

z >_ 0,  Mz ^-0. (2.1) 

Then for    u e R, 

Mu ^ 0 implies      u j^ 0. 

PROOF (see Figure 1):  Suppose that Mu ^0, but not u ^ 0. 

Then, because R is Archimedlan, there exists a smallest number 

A > 0 such that u + A z >_ 0.  The element w ■ u + A z satisfies 

w ^ 0 but not w ^-0.  On the other hand, Assumption II yields 

Mw ■ Mu + A Mz ^ 0, and therefore,  w ^»0 because of Assumption I. 

This contradiction shows that the Theorem Is true. (Notice, that 

z > 0 because of Assumption I.  For a more detailed proof, see [7].) 



♦ u 

w= u+Aftz ^ 0 
Mu^O 

Mz>0 

U 

Figure 1:  Illustration of the proof with R - S - R ; 

u » (u ,u ) ^ 0 iff u ^ 0, u2 ^ 0; u >" 0 iff u1 > 0,  u2 > 0; 

and the same order relations in S. 



SPECIAL CASE 1:  If M ■ A-B with a linear operator A 

satisfying Assumption I, and a positive linear operator B, then 

M satisfies Assumption I.  In particular, A « I satisfies 

Assumption I. 

2.2  NECESSARY CONDITIONS 

We will prove that the sufficient conditions of Theorem 1 are 

necessary "in general". 

THEOREM 2: Suppose that   M is inverse-positive.   Then the follow- 

ing statements hold. 

1. The operator   M satisfies  Assumption I if the second order 

relation in   S has Property  o- 

2. The operator   M satisfies Assumption II if its range contains 

at  least one strongly positive element. 

PROOF:  1)  Suppose that w ^ 0, Mw ^-0 for some weR and let 

v be any element in R.  Then, if the second order relation in S has 

Property a, there exists a number n satisfying Mv <^ nMw. This 

inequality yields v ^ nw for inverse-positive M.  Because there exists 

such a number n for every v e R, we have w ^0 by definition. 

2)  Let r c S be any strongly positive element in the range of M and 

Mz » r.  Then Mz >^ 0 and therefore z ^ 0,  because M is inverse- 

positive.  Thus,  z satisfies Assumption II. 



2.3 CONNECTED CLASSES OF OPERATORS 

For many Important classes of operators, It is easy to prove 

that Assumption I is satisfied (see, for example, Sections 3 and 4). 

If M is inverse-positive, the element z occurring in Assumption II 

may be constructed by solving the equation Mz * r for any r ^- 0 

(see the second part of the proof of Theorem 2). Considering, however, 

certain "connected" classes of linear operators M, instead of a single 

operator, one need prove Assumption II for only one operator of such a 

class. 

Let    9W be a set of linear operators    M whiah map    R into    S 

and satisfy Assumption I. 

A one parameter family z(t) c R {0 <_t  <_l)    will be called 

continuous  at tn c   (0,1) if for each natural n there exists a positive 

number 6(n) such that 

-ie < z(t) - z(t0) < ie for  | t-tj 1 6(n), (2.2) 

where e ^0 denotes an arbitrary element in R (which may depend 

on z and t ). 
0 ' 

LEMMA:    Suppose that for each pair of operators    M , M    c   9)1 

there exists a family of operators    M(t)   c 2)?   and a continuous fanily 

z(t)  c R    (0 <_ t _< 1),    suoh that 

M(0)   = M0,     M(l)  = M1,       M(t)z(t)>-0     (0<t^l). 

Let, moreovery  at  least one operator   M e Wl   be inverse-positive. 



Then all operators in   SK are inverse-positive. 

PROOF:  Suppose M. e 9W  is not inverse-positive. Define 

M ■ M and let M(t),z(t) have the properties mentioned above. 

The inequality Mz(0)^"0 implies z(0) ^0 because M  is 

inverse-positive.  The two last inequalities yield z(0) ^»0 because 

of Assumption I.  Thus, there exists a smallest positive number 

t0 ^ 1 such that z(t) ^-0 for 0 <^ t < t .  For this number t0, 

the right hand inequality in (2.2) yields 

n(-z(t )) 1 e - nz(t) <_ e if     0 1 ^ " 6 1 t < t0. 

Therefore, we have -z(t ) <^ 0 because R is Archimedian. 

If t » 1,  the element z(l)  satisfies (2.1) for M ■ M.  and, 

therefore, M.  is inverse-positive according to Theorem 1.  The 

inequality t  < 1,  however, contradicts the definition of t-. 

Applying Assumption I to MCt ), we get  z(tn) X
0» Therefore, there 

exists a natural number m with the property:  e <^mz(t ).  For n > m, 

the left hand inequality in (2.2) yields 

0-^ (1 - ^)z(t0) 1 z(t)    if    |t - t0|  small enough. 

That means, z(t) ^0 is true for a larger interval than  [0,tn). 

One need not always actually construct the elements z(t).  In order to 

prove their existence, some knowledge about the inverse operators of 

M e ÜW  is sufficient. 







11 

SPECIAL CASE 2: Let 

M - A - B 

with linear operators A,B, and suppose that A and B can be 

split Into 

A - A1 - A2,   B - B1 - B2, 

such that A defined by 

Äu « (Aiui " A2U2*  Alu2 ~ A2U1^ 

satisfies Assumption I,and the operators Bi»B9 are positive.  Then 

M defined by (2.3) with 

Ml " Al ~ Bl'  M2 " A2 ' B2 

satisfies Assumption I. 

For example, if A itself satisfies Assumption I, then A 

conr.Lructed with A. * A, A» = 0 satisfies Assumption I. 

2.5  ERROR ESTIMATION 

Let be given an equation 

Mu = r (2.6) 

which has a solution U*E R, and suppose that $    is  an approximation 

of u* with defeat 

dU] - -M* + r. 

ERROR ESTIMATION 1: If   M is inverse-positive,  aonstruat an element 

z > 0 in    R and calculate numbers    X,y such that    -X < y and 
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Then,  the following error estimation holde3 

-\z <_ u* - ♦ <_ uz. 

One proves this statement by applying Error Estimation 1 to 

M,  $ - (<M), 2 ■ (Zi-z). 

2.6  ITERATIVE PROCEDURES, EXISTENCE 

If M is inverse-positive, the equation Mu ■ r has at most 

one solution. Under additional assumptions, one can prove also the 

existence of such a solution using the means of the preceding sections 

SPECIAL CASE 1: Consider the special case M - A - B at the end 

of Section 2.1 with A satisfying Assumption I and B positive. 

Assume, moreover, that M,  and therefore also  A,  satisfies 

Assumption II and let AR * S.  Then, A is inverse-positive, and the 

operator T defined by Tu ■ A r + A Bu is an isotonic mapping of 

R into R. 

Suppose, that the inequalities (2.7) in Error Estimation 1 are 

satisfied and define sequences  {x, .).   {y,  ,}  by 
(n) '  ""(n) 

X(0) " * " Az'  y(0) " * + ^ 

Ax(n+1) " r + Bx(n)'  ^(n+l) " r + ^(n)   (n " O*1'2"-')' 

i.e. 

x(n+l) " Tx(n)'  y(n+l) " ^(n)     (n " 0^^t...).       (2.9) 
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require that u e R possesses all derivatives which actually occur 

in the given problem.  (For example, u"(x) shall exist if a(x) ^ 0 

for that point x.) 

Under what conditions do the inequalities 

L[u](x) ^0   (0 < x < 1) , 

V[u] >_  0,   W[u) >_ 0 

for    u e R? 

imply    u(x) >^ 0  (0 <^ x <^ 1)  (3.2) 

SPECIAL CASE A: The initial value problem 

L[u] = u' + c(x)u * s(x)      (0 < x ^ 1), 

V[u] = u(0) = A 

can be written in the form (3.1) with 

W[u] = L[u](l),  B = s(l). 

SPECIAL CASE B: The singular boundary value problem 

L[ul(x) = a(x)u" + b(x)u• + c(x)u » s(x)   (0 < x < 1) 

(3.3) 

with 

a(0) = a(l) = 0, 

but without given boundary conditions, can be written in the form (3.1) 

by defining 

V[u| = L[u](0), A = s(0);  W[u] - L[u](l),  B - s(l). 





18 

Thus, in each case one gets a contradiction to Mw ^ 0. 

For the SPECIAL CASE A, the assumptions (3.4), (3.5) are 

always satisfied.  Assumption II Is equivalent to (3.6). 

For the SPECIAL CASE B, the assumption (3.5) is equivalent to 

b(0) <^ 0,   b(l) >_ 0. 

For example, these Inequalities hold for 

L[u] = -xd-xW + ofx-^u' + c(x)u, 

if    o    is a non-negative constant.    If,  however,   the constant    o    is 

negative,   one needs additional boundary conditions  in order to form 

an  inverse-positive operator    M. 

EXAMPLES  of   functions    z:    The following functions    z    satisfy 

the  inequalities   (3.6)   If  the corresponding conditions,  stated below, 

hold. 

1) z(x)   E  1. 

if 

c(x)  > 0      (0 < x  <  1),      ß  > 0,       6  > 0; (3.7) 

2) z(x)  ■ cos(7T-e) (x-^) 

with small enough    e  > 0,     If 
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example, 9W may be a convex set. 

THEOREM 5: Let  the following assumptions be satisfied. 

D    For each    M = (L,V,W) t  SK. the homogeneous problemi 

aorresponding to  (3.1), has no nontrivial solution. 

2)    There is at  least one    M = (L.V.W) e iD? suoh that  (3.8) is 

satisfied. 

Then,   the implication  (3.2) is true for all    M « (L,V,W) e 2)?. 

PROOF:  The statement of this theorem can be derived from Theorem 3 

by considering each triple M = (L,V,W)  as an operator defined as in 

the proof of Theorem 4, and using the following facts. 

Because of (3.9) each M c 2W satisfies Assumption I according to 

the proof of Theorem 4.  Because of Assumption 1, all operators M c SW 

have an inverse M   which can be applied to  r ■ (s(x), A,B) with 

s(x)  1, A = 1,  B - 1. 

Moreover, for any family of operators M(t) c 9W (0 <^ t f, 1)  with 

continuous coefficient vectors f(t),  the functions z(t) ■ M  (t)r 

dopend continuously on  t. 

Finally, at least one M r 9)?  is inverse-positive, because (3.8) 

holds for at least one M F 9)i, and for this operator M Assumption II 

is satisfied also. 

Roughly spoken, Theoren. 5 says:  If one starts with a triple 

(L,V,l\'>  such that (3.2) holds, and then changes the coefficients 



21 

continuously, the implication (3.2) remains true as long as one 

does not hit a triple (L,V,W) such that the corresponding problem 

(3.1) does not have a unique solution. 

A very simple EXAMPLE is the set 9?? of triples M = (L,V,W) 

with (3.8). 

3.3 ERROR ESTIMATION 

Consider a problem (3.1) such that (3.2) holds. Suppose that 

there exists a solution u* e R,  and let  (|) e R be an approximate 

solution.  Then, one can get a bound for the error u* - ^  in the 

following way. 

ERROR ESTIMATION: Construct a function    z e R and calculate 

a constant   A such  that 

l-LUHx) + s(x)| 1 AL[z](x)    (0 < x < 1), 

|-V[<H   + A   |   <_ AV[z] 

|-W[<j)]   + B   |   ^ AW[z]. 

Then,   the error estimation 

|u*(x)   - (Hx) |   ^ Az(x) (0 ^ x 1 1) (3.10) 

ho Ids. 

3.4 A DIFFERENT APPROACH 

For ordinary differential equations, one often will choose an 

approximate solution 4> which satisfies the given boundary conditions. 

Then, one does not need (3.2) but only the weaker property: 
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3.5     ESTIMATION OF THE DERIVATIVE OF A SOLUTION 

It is often possible to calculate bounds for the derivative of 

the solution of a problem (3.1). For illustration, we consider the 

special case 

L[u](x)   = -u" + b^u'  + c(x)u - s(x)       (0 ^ x  <  1) 

u(0)   - A,       u(l)  =  B. 

(A more general discussion will be given elsewhere.) 

Suppose there exists a solution u* E R » C.tO,!] (1 C_(0,1) and 

there has been gained an error estimation 

iu*(x) - (Kx)| <. Xz(x)    (0 <_ x 1 1) (3.12) 

for an approximation 4) E R for u*.  Let z e R satisfy the 

homogeneous boundary conditions z(0) ■ z(l) = 0.  Let, moreover, 

b(x)  be bounded:  |b(x)| <_   N       (0 <^ x ^ 1).  Then, one can calculate 

a bound for  (u* - $)'. 

ESTIMATION OF THE DERIVATIVE: Construot a function    c  c  C [0,1] 

ana calculate a constant    u ^_ 0 such that 

l-LUKx) + s(x)| <_ uU'(x) - b(x);(x)] - A|c(x)|z(x) (0< x_< 1),   (3.13) 

Xz^O) <_ pc(0) . (3.1A) 

Then, 

|u*,(x) - ^'(x)! <_ u;(x)   (O^xi 1). 

PROOF:  Because of (3.12), (3.13), (3.14), we get the following 

estimations for v* = u*': 
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(v* . ^•)« _ b(v* - ^)  = L(^] - s + c(u* - 0) 

< uCr.' - bfj   (0 <_ x ^ 1), 

(v* - ({»'HO) » llm ir1(u*(h) - 0(h)) 
h * +n 

<_ A lim h^zCh) = Azf(0) <_ ^,(0) 
li->+0 

According to Theorem 4, the implication (3.2) holds for the 

operators 

L'M = v' - bv,  defined on  (0,1), 

V'M = v(0),  U"[v] = L'fvKl) 

(see Special Case A and notice that Assumption II is satisfied with 

z = c' .)  Therefore, the inequalities proved above yield 

v* - .'' ^ ue  (f1 1 x 1 O«  In a similar way, one shows that 

-\\(,  <_v* -  i*     (0 ^ x ^ 1)  which then proves the error estimation. 

REMARK: The conditions  (3.13), (3.1A) may be replaced by similar 

conditions which contain an inequality at    x = 1, instead of  (3.14). 

4.  SYSTEMS OF EQUATIONS OF AT MOST THE SECOND ORDER 

4.1  SUFFICIENT CONDITIONS FOR INVFPSE-POSITIVITY 

We consider now a boundary value problem for m unknown functions 

u.(x),...,u (x) : 
i        m 
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4.3 ERROR ESTIMATION' 

Let the given proolem In Section 4.1 have a solution u* e R, 

and let (f) e P. denote an approximation for u*. Suppose, that the 

inequalities (4.1) hold and that Assumption 11* in Section 4.2 is 

satisfied.  Then, one can get a bound for the error u* - $ in the 

following way. 

ERROR ESTIMATION: Construct an element    z e R and oaloulate a 

constant  A such that 

l-L.mU) + s.(x)\   <_  AL.tzKx)   (0 < x < 1), 

l-V.m + A.| <_  AV^z], 

l-V^m + B.| < AW^z]    (i = l,2,...,m). 

Then, 

|u ^x)  - * (x)|   <  Xz1(x)     (O^x^l;      i - 1.2,...,m). 

For    z    in Assumption II', such a constant    X    always exists. 

This  statement  is a consequence of Error Estimation 2  in Section 2.5. 

5     BOUNDARY VALUE PROBLEMS OF THE  FOURTH ORDER 

5.1    THE GENERAL PROBLEM 

Consider a differential equation 

L[u](x)  = s(x)       (0 1 x <_ 1), 

together with  two boundary conditions at    x = 0: 
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V^u] = Ai  (i « 1,2), 

and two such conditions at  x = 1: 

W^u] - B1  (1 = 1,2). 

Let L be a linear differential operator of the fourth order such 

that the coefficient of u   is positive in  [0,1],  and let 

V.[u], W [u] be linear combinations of derivatives of u up to the 

third order.  For simplicity, we assume that the coefficient-functions 

of L are analytic on  [0,1]. 

Under what aonditions do the relations 

L[u](x) >_ 0  (0 ^ x <_ 1) 

V.[u] = W^u] = 0 (1 = 1,2) 
imfly    u(x) >_ 0 (0 ^ x ^ 1)  (5.1) 

for all analytic functions    J on     [0,1] .' 

This is true iff the corresponding Green's function exists and is 

non-negative. Therefore, if this implication is true for all analytic 

functions u,  it is also true for all u c C,[0,1]. 

There are some difficulties in applying Theorem 1 to this problem 

directly.  In applying Theorem 1 to second order problems, we used the 

fact that the first and second derivatives of a function have to 

satisfy certain necessary conditions at a  point where this function 

assumes an extremum.  However, at such a point nothing can be said about 

higher derivatives which occur in problems of higher order. Therefore, 

we split the given operator L. 
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We  construct  linear differential operators of  the second order 

L.,L„    such that  for all analytic functions    u: 

L2[v]  - w(x)(L[u]   + q(x)u)       (0 ^ x 1 1) 

with 

(5.2) 

(5.3) L^u]  = v 

and some  fixed (analytic)   functions    w,q. 

Then, we ask for conditions such that  for all analytic    u(x): 

L(u](x)   > 0    (0 < x <  1) , 

Vi[u]   = W^u]  - 0    (i -  1,2) 
imply 

u(x)   >  0, 

(5.4) 
v(x)   >  0   (0 < x <  1). 

In order to gain such conditions, we formulate this problem in 

abstract terms and then apply Theorem 1. 

Let  R be the space of all functions u which are analytic on 

[0,1] and satisfy the boundary conditions V [u] = W [u] = 0 (i = 1,2), 

and let S be the set of analytic functions U on  [0,1]. Define 

for u e R, respectively U e S: 

u > 0  iff 

u(x) > 0, 

v(x) > 0 (0 < x < 1) 
(5.5) 

with (5.3), 

U 10 iff U(x) 2 0 (0<_x£l), 

and let u^O» U ^"0 denote the corresponding strong order relations, 

defined by Property o .  Then,  Mu = L[u]  is a mapping of R into S, 
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and (5.A) holds iff M is inverse-positive. 

Thus, we may apply Theorem 1 in order to get sufficient conditions 

for the property (5.4).  It is not possible to present here a general 

theory of this kind.  A first paper on this topic will soon be published 

elsewhere [9].  Instead of reviewing general results, we will discuss 

here a special, but typical case. 

5.2 A SPECIAL PROBLEM 

For the special boundary value problem 

L[u](x) = uIV - bu" + c(x)u - s(x)   (0 ±x <_!), (5.6) 

u(0) * A^  u^O) - A2,  u(l) - B1,  u'd) = B2 (5.7) 

with constant    b,     let  us choose the following splitting: 

L^u]  = -pu" + p'u'  + (P + Y)U. 

(5.8) 
L2[v]  = -pv" + p'v' + (P - Y)V 

where    p(x)    denotes an analytic  function,     P ■ -bp" + ^bp,     and    y 

is a constant.     For these operators,   (5.2)   (5.3)  hold with 

2 2 
w » p  ,     q  E  L2[P + Y)  " cp  . 

In particular,  we  choose 

x 

p(x)   =  fg(Od£, (5.9) 
0 

where    g    denotes a  function,  such that  for some constant    c   : 

TV 2 
B      - 2bg,, + b^g  = 4c0g (0 1 x 1 1) (5.10) 
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The functions v » L [u] with u c R satisfy v(0) - v'CO) « 

v(l) ■ v'CD « 0. There are, however, functions v of that kind such 

that v"(0) +  0, v"(l) 4  0.  Therefore, and because u e R satisfies 

the homogeneous boundary conditions, corresponding to (5.7), for 

u e R: 

iu(x) > 0, v(x) > 0  (0 < x < 1), 

(5.16) 
u'^O) > 0,  u'^l) > 0, v'^O) > 0,  v'^l) > 0. 

Moreover, for U e R: 

U ^«0   iff   U(x) > 0  (0 <_ x ^ 1). 

Thus, Assumption II of Theorem 1 Is satisfied because of the 

conditions (5.14), and Assumption I of Theorem 1 is equivalent to the 

following condition:  For u E R,  the inequalities 

L[u](x) > 0 (0 < x 1 1) 
(5.17) 

u(x) >_ 0,  v(x) = LjIuKx) >_ 0  (0 <^ x ^ 1) 

imply the inequalities in  (5.16). 

The  function    p    in  (5.9)   is  positive  in the open  Interval     (0,1) 

2 
because of  the properties'of    g.     The  function    q» ■    L  [P + y]  - c p 

is constant because 

TV 7 
2q(:)  =  p[giV  -  2bgM +  (b^  -  4c0)g]   E 0       (0 ^ x 1 1). 

The constant value of    q      Is 

q0(x)   = q0(0)   = \[l   -   (1-c)2]   >  0. 
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Therefore,   and   because  of   (5.13), 

q(x)   = q0(x)   +   (c0 -  c(x))p2(x)   1 0     (0 1 x 1 1). 

Let now the inequalities (5.17) be satisfied for some u t R. 

Then, the function on the ri^ht-hand side of the equality (5.2) is 

positive in  (0,1),  and therefore, one can prove, by the same method 

that was used for second order equations, that v(x) > 0  (O < x < 1). 

But then, the same proof applied to equation (5.3) yields 

u(x) > 0  (0 < x < 1). 

In order to prove u"(0) N 0 and v"(0) > 0,  let us assume that 

v"(0) ^ 0  is not satisfied.  Then,  v"(0) = 0 where 

v"(0) = (+ V'CO) + Y)u"(n) = ', ru'^O), (5.18) 

and therefore,  u"(0) = 0.  These equalities then yield 

0 1 v'" (0) = (~h"(0)  +Y)u,,,(0) = (-1 + ^"'(O)  and u'" (0) ^0 

which is only possible if v",(0) = u"'(0) = 0.  In this case, however, 

0 <_  vIV(0) = (-|pM(0) + Y)uIV(n) = (-3 + |)L[u](0) 

which contradicts   (5.17).    Therefore,     v'^O)   > 0    and also    u"(0)   > 0 

because  of   (5 .18). 

In   the   same   wav,   one  proves     u"(l)   >  0,    v"(l)   >  0. 

EXAMPLE   1:        For 

4c0 =   (ATI
2
 +b)2, 

the  problem   (5.10),   (5.11)   lias  the  solution 

R(X)   = - 77 «in  2TT   (X-'S) . 
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EXAMPLE 2: For c - b - 0,  the problem (5.10), (5.11) has 

the solution g(x) ■ x(l-x)(l-2x), so that 

p(x) - >JX
2
(1-X)

2
. 

2    2 Moreover, the function z ■ x (1-x)  satisfies (5.14) if c(x) = 0. 

5.3  CONNECTED CLASSES OF PROBLEMS 

Theorem 3 cannot be applied immediately because the order relations 

defined in R now depend on the operator M. However, one still can apply 

the basic idea of that theorem. 

Again, we consider the problem (5.6), (5.7); but first we assume 

that c(x) = c    m  const. 

Let    $   be a oonneoted set of   aoeffioient vectors      f ■ (b,c ), 

and let     ? denote the set of operators   L uith    (btc )  e Ä. 

If, in the following, connected with some operator L e ? , an 

operator L.  is considered, this operator L  shall be defined by (5.8) 

through (5.12) with the coefficients (b.c )  of  L.  For example, in 

(5.15) this operator L.  is to be used. 

THEOREM 7a: Suppose    that  the following assumptions are satisfied. 

la)    For each    L c ?, the homogeneous problerr,  corresponding to 

(5.6), (5.7), has no nontrivial solution. 

lb)    For each    L E ?, the corresponding problem  (5.10) has a 

unique solution, such that  (5.11) holds. 
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FIGURE 2: 

Shaded domain:  described by (5.25); 

  :  eigencurve X - c 

eigencurves  A = crt » A(b)  of problem (3.21). 

eigencurve X  - c    *  A*(b)  of problem (5.20); 

'0 
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0      IV 
corresponds to L [u] ■ u  .  Suppose, the inequality does not hold 

for some g ,  corresponding to an operator L e ? .  Then, by 

continuity arguments of a similar kind as we have used before, 

one can conclude that there exists a function g associated with an 

operator L e ? such that g(0 = g'CO ■ 0 for some  C e (O,1^]. 

Suppose first, that this operator L has coefficients b,c 

2 
sntisfylng b < 4c .  Then, 

g(x) = ~—rr  [sin ß • sinh 2a(x-^) - sinh at • sin 2ß(x-4)] 
ü ^ ex , p ) 

la » / 2/~cl  + b,     2ß = / where 2a * / 2/ c + b,     2ß = / 2/ c- - b,  and 

A(a,ß) ■ 2a sin ß«cosh a - 2ß sinh a-cos ß. 

The value A(a,ß)  does not vanish for any numbers a,ß which 

belong to a vector (ts^) e St ,  because A(a,ß) * 0 determines the 

eigenvalues of the problem (5.20), and c < A*(b). 

The argument  C» mentioned above, cannot be C = ^  because 

g'C^) = 0 would yield sinh a/a = sin ß/ß which is not satisfied 

for any a > 0,  ß > 0. 

For 0 < C < -2, we calculate 

0 = A(a,ß)[g(L).2a.cosh 2a(^-h)   -  g'CO • sinh 2a(t,-h) \ 

= -(i-h)~l'h  sinh a.A(ä,ß) 

with a " ta,  S ■ tß, and 0 < t = 2U-h)  <  1. However, A(a,ß) t 0 
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c(x),  and that this function is non-negative if and only if 

(5.23) is true for all  u e R,  or all u e C [0,1]. 
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6.     NUMERICAL APPLICATION 

6.1    A METHOD OF APPROXIMATION AND ESTIMATION 

Let  there be given a differential equation 

L[u](x)   » s(x) (0 <_ x ^ 1) 

of the N-th order (for example, N - 2,  or N ■ 4),  together with 

appropriate linear (inhomogeneous) boundary conditions, and suppose 

that 

L[u](x)^0  (0 ^ x ^ 1)  implies  u(x) ^ 0  (0 ^ x ^ 1) 

for all u e C [0,1]  which satisfy the corresponding homogeneous 

boundary conditions.  Assume, moreover, that the given problem has a 

solution u* e C [0,1]. 

Then, one may calculate an approximation 4> for u* and bounds 

for the error u* - (j) in the following way. 

STEP A (Approximation).  A development 

* ' ^0 + Vl+ '•• + Vm 

is set up such that for arbitrary constants a.,...,a ,  the function 

4) is contained in C [0,1] and satisfies the given boundary conditions. 

The constants a  are determined such that the defeat 

dUHx) = -L[4)](x) + s(x) 

is orthogonal to m appropriately chosen functions  ik (k ■ l,2,...,m), 
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method, and the system (6.2) is solved by an elimination procedure, 

In order to obtain a number A satisfying (6.3), the function 

d[4>] (x)/L[z] (x) is calculated, and the corresponding graph is 

dotted for a large number of points x. 

6.2 AN EXAMPLE OF THE SECOND ORDER 

The boundary value problem 

-u" + Zxu' + (l-x2)u » 1-x2  (0 <_ x ^ 1) , 

u'CO) « u(l) « 0 

has the exact solution 

2 
u* - 1 - exp^Cx -1). 

We calculated approximate solutions with 

*0 ' 0'  *i = 1~X    ^ " 1»2'---»m)» 

but chose  w  and the ty,     in three different ways (Cases 1,2,3). 

For the error estimation, the function z ■ z  with 

2 „     2 

(6.5) z (x) - ^(e - e )  and  L[z ] ■ e  + (1-x )z 

was used.  The Tables 1,2,3 contain some of the corresponding results, 

namely 

6-|iu*-(H|, and xHzll-JjAe with A - | |d[$]/L[z] | |, 

where the notation 

| | u | | = max {| u (x) | : 0 <^ x <_ 1} 

is used.  Obviously, A|(z||  is the maximum of the bound for the error 

|u* - 4)|.  The numbers 6 are rounded in the usual way, the numbers 

A||z|| are rounded up to the next larger decimal. 

The simplest weight function w(x) = 1, and the functions 
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k-1 
i^. ■ x    (k - l,2,...,m) give the results in Table 1, for 

m ■ 2,3,4,5 (Case 1).  For this case, the maximal values of the 

quotient  |d((|»] (x) |/L(z] (x) occur near the boundary points x ■ 0 

and x « 1. 

Therefore, in the second case, the same functions i^. ,  but 

weight functions 

w(x) - [1 - Y(2X-1)2]"1    (Y = J, |, |) 

are used which have larger values near the boundary points than 

in the middle of the interval.  -The corresponding results for m ■ 4 

are contained in Table 2. 

A similar effect can be obtained with the simple weight function 

w(x) = 1,  but rational functions  tk.  For m - 4, 

\p.   El,   ij; = x,   ty-  =      ii.   =  rr- : , 
1        2        3x-c     4x- (1+c) 

and different values of c,  one gets the results in Table 3. 

The result in the second case, for Y ■ 7/8, comes close to that 

which one would gain by requiring that the Tschebyscheff norm of 

d[<ti]M/L[z]{x)     is minimal, because the extrema of this quotient 

have alternate signs and almost equal absolute values. 

In all cases which we treated, we obviously did not get very much 

smaller error bounds by using another approach than the simplest one 

in Case 1. 
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TABLE 1  (w(x) = 1, ^ - x 
k-1, 

A | | z | j   ■ > • ^e ■         | 

m 6 -   1 lu* - *ll i i   error bound   ! 1        i 

3 0.000 715 0.033                             | 

4 0.000 069 0 0.008    3 

5 0.000 005 04 0.000    92                    | 

6 0.000 000 525 0.000    15                    | 

TABLE 2  (W = [1 - Y(2x - I)
2]"1,  ^ = x1""1, m - 4) 

X | | z ||  « Aije - 

Y 6 «   ||u* - dl I |  error bound   1 \       1 

0 0.000 069 0.008    3                      1 

0.5 0.000 114 0.007    3 

0.75 0.000 157 0.006    3                       | 

0.875 0.000 192 0.005    4 

TABLE 3  (w = 1, m - 4, ii      as in (6.6)) 

X | | z | |  =  X^e = 

!     c 6 -   | |u* -  (}) | j i 1  error bound   I 1        j 

i 0.000    077 0.008    1 

0.5 0.000    088 0.007    9 

0.2 0.000    116 0.007    3 

0.01 0.000    256 0.006    3 
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It was not necessary to use orthogonallzed functions i>, 

in order to avoid undesired consequences of rounding errors in 

solving the linear system.  (For corresponding error estimations 

for partial differential equations, we had to use orthogonallzed 

functions  0. •) 

6.3  CONCERNING THE ACCURACY OF THE ERROR ESTIMATION 

For the examples of Section 6.2, the actual error  |u* - $\ 

is much smaller than the error bound, and the ratio  6/A decreases 

with increasing m. This has to be expected in general, if one 

calculates error bounds for different m in the same simple way, as 

we did. 

If one requires that the defect is orthogonal to all polynomials 

up to the degree m - 1, or to functions with similar behavior, the 

defect assumes the value 0 at least m times in the interval  [0,1]. 

The error u* - 4) then usually oscillates similarly.  However, because 

the defect d[<b]  ■ L[u* - 0]  contains derivatives of the error, this 

defect will not decrease as fast as the error, with increasing m.  For 

example, if  L[u] = -u",  and u* -<t>      -  f(m) sin(m-l)7rx with some 

(decreasing) function f(m),  then df^111] ■ (m-1) IT (U*-(() ). 

If one wants to get an error bound which is close to the actual 

error, this bound need have a similar oscillatory behavior as u* - 4). 

To calculate such a bound requires much more work than to get such simple 

bounds as in Section 6.2.  This additional effort is better used to 
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obtain better approximations. 

For example, let  4> ■ ^  be the approximations of Case 1 for different 

m ■ 3,4,5,6, and denote by  X  the corresponding value \    in Table 1. 
m 

3 
Then, for 4> m <b  t    the inequality (6.3) is satisfied for A ■ 1 and 

z - ; with C ■ «T - «T + XcZ  and z  as In (6.5).  This function  ; 

is a bound for  j a* - ((> |  which is not much larger than  |u* - 0 | 

3   6     0 
Itself, and the similar function $    ~  $    +  A,z   is an even better bound. 

But, it is not reasonable to use the estimation  |u* - $ | <_ C« ^ would 

be better to use  |u* - <|i | ^_ X.z . 

The question of praotioal  interest is not,  how close to the 

actual error the error bound is,  but how small a bound one can get with 

a certain amount of work. 

If one wants to get exact error bounds, one has to take into account 

the rounding errors.  The rounding errors which occur during the 

calculation of the constants a  might influence the accuracy of the 

approximation <|), but they do not destroy the validity of the correspond- 

ing error estimation.  Only the rounding errors which occur when $    is 

calculated with the computed a ,  and those which occur during Step E 

have to be considered in some way.  In particular, one has to be careful 

in calculating the defect d[4)] which usually is a small number computed 

as a difference of larger numbers. Eventually, one has to compute the 

defect with double precision.  This was not necessary for our examples. 
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6.4  EXAMPLES OF THE FOURTH ORDER 

We treated the boundary value problem 

IV 
u  - bu" + W[l + x(l - x)]u - 1000(1 + x)   (0 1 x 1 1) 

u(0) - u'CO) - u(l) - u'Cl) - 0 

for different constants b and U.  Approximate solutions ^ have 

been calculated using 

yx) = 0,  ^ - x2(l - x)^1"1   (i - 1,2 m), 

w(x) = 1,   ^i - x
1"1 (i - l,2,...,m). 

The method of error estimation in Section 6.2 can be applied if 

(5.22) is satisfied for c(x) = y[l + x(l-x)],  i.e. if 

-IOTT
2
 < b < »,  jA1(b) < u <_ jA*(b) (6.6) 

If b  and u are small enough, one can use 

z = x2(l - x)2 (6.7) 

because then L[z](x) > 0.  This was done in 

CASE 1:   b - 0;  u = 1. 

The Table 4 contains some of the corresponding results: 

<)>(1i),  MdUlll. and  A||z||  with A - | |d[^/L[z] | | .    (6.8) 
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The values Qih)    are listed with all decimals that were calculated 

by the computer.  Therefore, the last decimals might be influenced 

by rounding errors. 

For 

CASE 2:   b « 6, w - 100, 

different functions z have been used, namely z in (6.7), and the 

solutions z = z  of the problem 

TV 
z  - bz" + k-yz « 1,  z(0) » z'CO) - z(l) - z'U) - 0 

for 

k = 1, 1.25, 2, 4, 10. (6.9) 

Except the cases m = 4, k = 8; m = 4, k = 10; and m = 7, k = 10, 

the maximum of d[<|)]/L[z] occurred at one of the boundary points, 

so that then 

[error bound  = A z 
[du] fffftL^ ||z|| . v||d[0]||,       (e.io) 

where  the numbers    v    are listed for different cases in Table 5A. 

The Table 5B contains  the quantities   (6.8)  for Case 2 with 

z = zio- 

For 

CASE 3: b = 20;     p =  200,  400,  800,   1200, 
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we have checked how the approximation and estimation procedure behaves 

with increasing c(x).  For b ■ 20,  the second relation in (6,6) 

becomes 

595 a J^Cb) < u 1 jA*(b) « 1229 

Among the functions z.  with k as in (6.9),  z.  gives the smallest 

bounds for most of the numbers m which we used.  Table 6 contains 

some of the corresponding results. 

Finally, in 

CASE 4:   b - 20;  p ■ -200, -400, -500, 

we checked how the error bounds behave with decreasing c(x).  Some 

results are given in Table 7.  For simplicity, we used z ■ z 

although other functions z,  might give better bounds. 
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TABLE 4  (b - 0, p - 1) 

A     z      «      error bound 

m t(h) llduill for    z    in (6.7) 

2 3.899    673 1 2.595 0.006    8 

3 3.896    778 0 1.258 0.003    3 

4 3.896    778 4 1.232 0.003    3 

5 3.896    572 6 0.117 0.000    31 

TABLE 5A (b = 6, M = 100) 

z v    in   (6.10) 

z    as  in  (6.7) 0.005    209 

1 1 0.001    925 

\ 1.25 0.001    855 

z.     with    k =    ( 
1 

2 0.001    673 

/ 
4 0.001    325 

1 10 0.000    809 

TABLE 5B  (b = 6, p = 100) 

X     z       =      error bound 

m Hh) IdUlM for    z = z10 

3 2.797     274 9 104.98 0.085 

4 2.797     275 1 51.27 0.057 

5 2.791    040 6 4.67 0.003 8 

6 2.791    041 5 2.47 0.002 0 

7 2.790    992 4 1.32 0.001 4 
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TABLE 6     (b - 20) 

A   [z      ■      error bound  | 

u m *&) MdUlll for    z ■ z, 
4 

3 1.551    691 4 241.09 0.13 

400 
A 

5 

1.551    691 

1.556    082 

4 

7 

57.51 

0.904 

0.032 

0.000    67 

6 1.556    083 9 0.602 0.000    66 

3 1.102    873 6 214.90 0.083 

A 1.102    873 6 22.61 0.071 

800 5 1.102    733 9 20.33 0.064 

6 1.102    733 9 12.74 0.049 

7 1.102    88 9 5 1.40 0.000    44 

3 0.851    844 09 262.68 0.076 

4 0.851    844 12 63.02 0.014 

1200 5 0.850    614 11 39.51 0.008    6 

6 0.850    614 12 25.55 0.007    1 

7 0.850    904 94 2.54 0.000    55 
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TABLE 7     (b -  20) 

A z  ■  error bound 

u m .«(Js) lldmii for z ■ z. 

3 3.841 732 4 636.30 1.6 

4 3.841 732 5 495.95 1.2 

-200 5 3.914 621 2 31.14 0.075 

6 3.914 623 0 14.83 0.036 

7 3.914 505 0 6.07 0.015 

3 7.423 625 7 1 317 5.0 

4 7.423 626 5 1 193 4.6 

-400 5 7.755 458 4 33.20 0.13 

6 7.755 471 1 9.84 0.038 

7 7.755 355 1 2.05 0.0078 

3 13.818 191 2 554 16 

4 13.818 193 2 439 16 

-500 5 15.109 652 37.03 0.20 

6 15.109 649 10.26 0.099 

7 15.109 907 4.47 0.024 



56 

7.  REFERENCES 

For differential equations of the first and second order, monotonlc 

properties have been used fo r a long time (see, for example, [5], [2]). 

Chaplygin studied extensively the application of such properties for 

numerical calculations. Since then, a large number of papers on that 

subject have been published. We list some books and papers where 

corresponding references and numerical examples can be found.  Besides 

that, only a few papers are listed that are directly referred to in this 

article. 



57 

[1]  Beckenbach, E. F., and Bellman, R.:  Inequalities.  Berlin- 

Göttingen-Heidelberg, 1961, pp. 1A8 ff. 

[2]  Chaplygin, S. A.: New Methods in the Approximate Integration of 

Differential Equations (Russian). Moscow, Gosudarstvd. 

Izdat. Tech.-Teoret. Lit. 1948. 

[3] Collatz, L.: Aufgaben monotoner Art. Arch. Math. 3, 365-376 (1952). 

[4] Collatz, L.:  Funktionalanalysis und Numerische Mathematik. Berlin- 

Göttingen-Heidelberg (1964), pp. 300 f. 

[5]  Perron, 0.:  Ein neuer Existenzbeweis für die Integrale der 

Differentialgleichung y' - f(x,y). Math. Ann. 76, 471-484, 

(1915). 

[6]  Schröder, J.:  Lineare Operatoren mit positiver Inversen. Arch. 

Rational Mech. Anal. 8 (1961), 408-434. 

[7]  Schröder, J. : Monotonie-Eigenschaffen bei Differentialgleichungen. 

Arch. Rational Mech. Anal. 14 (1963) 38-60. 

[8]  Schröder, J. :  Estimations in Nonlinear Equations Proceedings, IPIP-Congress 

1965, In print. 

[9]  Schröder, J.:  Randwertaufgaben Vierter Ordnung mit positiver 

Greenscher Funktion. Math. Z. In print. 

[10] Walter, W.:  Differential-und Integral-Ungleichungen. Berlin- 

Göttingen-Heidelberg-New York (1964). 


